

CERTIFICATIONS

MYcell-M

HIGH RESISTANCE STRUCTURAL FOAM CORE

ADVANTAGES

ENHANCED FEATURES

SUPERIOR SHEAR STRENGTH

BOASTS SUPERIOR RESISTANCE AND RIGIDITY DESPITE BEING LIGHTWEIGHT

WELL-SUITED TO ALL SANDWICH NEEDS

LOW RESIN ABSORPTION

SELF-EXTINGUISHING

HIGH THERMAL INSULATION CAPACITY

SUPERIOR RESISTANCE TO CHEMICALS

MYcell-M is a closed cell cross-linked PVC foam with a high strength-to-weight ratio, rendering it ideal for all composite material needs.

MYcell-M stands out thanks to its superior chemical resistance, low water/resin absorption, thermo-formability, insulating properties, and workability. It is also compatible with the most popular resins used in composite structures, including epoxy, polyester and vinylester.

MYcell-M is available in a wide range of formats and finishes that meet specific customer needs.

FIELDS OF APPLICATION

MYcell-M technical features and high performance make it an excellent choice for a variety of composite applications. MYcell-M can be used as a core material in the marine, aeronautical, automotive, wind energy and sports equipment sectors, in addition to various industrial fields.

SUSTAINABLE GRADES

ecoGreEN eco-variant of MYcell reduces the carbon footprint by incorporating raw materials produced using energy from renewable sources.

ecoBlue eco-variant of MYcell takes carbon footprint reduction a step further. MYcell EcoBlue incorporates raw materials derived from agricultural and industrial waste, all produced using energy from renewable sources.

TECHNICAL DATA SHEET TYPICAL VALUES

FOAM			M040	M048	M060	M080	M100	M130	M200	M250
Density	ISO 845 (min)	kg/m³	40 (35)	48 (43)	60 (54)	80 (72)	100 (90)	130 (120)	200 (180)	250 (225)
Compressive strength	ISO 844:2014 B	MPa	0,52	0,62	0,98	1,60	2,05	3,22	5,07	6,88
Compressive modulus	ISO 844:2014 B	MPa	37	44	67	97	121	183	300	384
Shear strength	ISO 1922	MPa	0,47	0,52	0,79	1,20	1,48	2,44	3,44	4,37
Shear modulus	ISO 1922	MPa	15	16	21	30	36	55	77	98
Shear elongation at break	ISO 1922	%	6	7	18	19	25	32	35	35
Tensile strength	ASTM D 1623	MPa	0,71	0,98	1,82	2,74	3,18	4,35	6,26	7,19
Tensile modulus	ASTM D 1623	MPa	68	71	100	146	162	227	358	439
HDT	DIN 53424	°C	100	115	125	125	125	125	125	125
Standard block dimensions		mm	1330 2850	1270 2730	1150 2450	1020 2180	950 2050	850 1900	750 1600	700 1500