

ph. +39.0437.772318 fax +39.0437.772059

CERTIFICATIONS

ADVANTAGES

ENHANCED FEATURES

SUPERIOR SHEAR STRENGTH

ABLE TO WITHSTAND TEMPERATURES UP TO 140°

BOASTS SUPERIOR RESISTANCE AND RIGIDITY DESPITE BEING LIGHTWEIGHT

WELL-SUITED TO ALL SANDWICH NEEDS

LOW RESIN ABSORPTION

SELF-EXTINGUISHING

HIGH THERMAL INSULATION CAPACITY

EXCELLENT RESISTANCE TO CHEMICALS

MYcell-H

HIGH TEMPERATURE STRUCTURAL FOAM CORE

MYcell-H is a closed cell cross-linked PVC foam that is resistant to high temperatures and has a high strength-to-weight ratio, rendering it a smart choice for composite material structures.

MYcell-H stands out thanks to its superior mechanical properties, along with elevated resistance to chemicals, low water/resin absorption, thermoformability, insulating properties, and excellent workability. It is also compatible with the most popular resins used in composite structures, including epoxy, polyester and vinylester.

Mycell-H is available in all standard models and in a range of finishes that meet specific needs.

FIELDS OF APPLICATION

MYcell-H technical features and high performance render it well-suited to a variety of composite applications. MYcell-H can be used as a core material in the marine, aeronautical, automotive, wind energy and sports equipment sectors, in addition to various industrial fields.

SUSTAINABLE GRADES

ecoGreEN eco-variant of MYcell reduces the carbon footprint by incorporating raw materials produced using energy from renewable sources.

ECOBILE eco-variant of MYcell takes carbon footprint reduction a step further. MYcell EcoBlue incorporates raw materials derived from agricultural and industrial waste, all produced using energy from renewable sources.

ph. +39.0437.772318 fax +39.0437.772059

TECHNICAL DATA SHEET **TYPICAL VALUES**

MYcell-H HIGH TEMPERATURE STRUCTURAL FOAM CORE

FOAM			H060	H080	H100	H130
Density	ISO 845 (min)	kg/m³	60 (54)	80 (72)	100 (90)	130 (120)
Compressive strength	ISO 844:2014 B	MPa	1,01	1,63	2,40	2,94
Compressive modulus	ISO 844:2014 B	MPa	65	96	160	207
Shear strength	ISO 1922	MPa	0,86	1,26	1,73	2,32
Shear modulus	ISO 1922	MPa	21	29	46	59
Shear elongation at break	ISO 1922	%	29	32	29	24
Tensile strength	ASTM D 1623	MPa	1,98	2,84	3,23	3,85
Tensile modulus	ASTM D 1623	MPa	97	138	133	166
HDT	DIN 53424	°C	135	135	135	135
Standard block dimensions		mm	1120 2400	1005 2150	940 2030	850 1900

The data given here are the results of tests carried out by various laboratories. Unless explicitly defined as a minimum value, it should be considered as a typical average value. The data sheet is subject to revision. The specific use must be verified by suitable tests. The data does not represent a guarantee for the use of the material. This data sheet does not constitute a liability for the company. Please check the last version (MS050 rev1.2 02/2025).